Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Antiviral Res ; 203: 105343, 2022 07.
Article in English | MEDLINE | ID: covidwho-1850637

ABSTRACT

Besides pandemic SARS-CoV-2, also endemic seasonal human common cold coronaviruses (hCoVs) have a significant impact on human health and economy. Studies on hCoVs and the identification of antivirals are therefore crucial to improve human well-being. However, hCoVs have long been neglected and the methodology to study virus infection, replication and inhibition warrants being updated. We here evaluated the established plaque-based assays to determine viral titers and cell-to-cell spread and developed protocols for the immunodetection of the viral nucleocapsid protein by flow cytometry and in-cell ELISA to study infection rates at early time points. The developed protocols allow detection of hCoV-229E infection after 2, and hCoV-NL63 and -OC43 infection after 3 days at a single cell level or in a 96 well microtiter format, in large sample numbers without being laborious or expensive. Both assays can be applied to assess the susceptibility of cells to hCoV infection and replication, and to determine the efficacy of antiviral compounds as well as neutralizing antibodies in a sensitive and quantitative manner. Application revealed that clinically applied SARS-CoV-2 targeting monoclonal antibodies are inactive against hCoVs, but that the viral polymerase targeting antivirals remdesivir and molnupiravir are broadly active also against all three hCoVs. Further, the in-cell ELISA provided evidence that nirmatrelvir, previously shown to broadly inhibit coronavirus proteases, also prevents replication of authentic hCoVs. Importantly, the protocols described here can be easily adapted to other coronavirus strains and species as well as viruses of other families within a short time. This will facilitate future research on known and emerging (corona)viruses, support the identification of antivirals and increase the preparedness for future virus outbreaks.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Common Cold , Coronavirus NL63, Human , Antiviral Agents/pharmacology , COVID-19/diagnosis , Common Cold/diagnosis , Common Cold/drug therapy , Humans , SARS-CoV-2 , Seasons
2.
Viruses ; 13(9)2021 08 27.
Article in English | MEDLINE | ID: covidwho-1374536

ABSTRACT

SARS-CoV-2 is the virus responsible for the COVID-19 pandemic, causing respiratory syndrome and other manifestations. The clinical consequences of the SARS-CoV-2 infection are highly heterogeneous, ranging from asymptomatic and mild to severe and fatal conditions, with the highest mortality rate reached among elderly people. Such heterogeneity appears strongly influenced by the host immune response, which in turn is profoundly affected by aging. In fact, the occurrence of a low-grade inflammation and a decline in specific immune defense is generally reported in older people. Although the low ability of B cells to provide primary and secondary specific responses with a consequent increase in susceptibility to and severity of virus infections is generally described in elderly people, we would like to present here the particular case of a 100-year-old woman, who recovered well from COVID-19 and developed a long-term memory against SARS-CoV-2. Following the infection, the patient's blood was tested with both a classical ELISA and a specific Cell-ELISA addressed to measure the anti-spike S1 specific IgG released in plasma or produced in vitro by memory B cells, respectively. While showing negative on classical serological testing, the patient's blood was positive in Cell-ELISA up to 1 year after the infection. Our observation highlights a potential mechanism of B cell-dependent, long-term protection in response to SARS-CoV-2 infection, suggesting that in a case of successful aging, the absence of specific antibodies in serum does not necessarily mean the absence of immune memory.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/virology , Host-Pathogen Interactions/immunology , Immunologic Memory , SARS-CoV-2/immunology , Age Factors , Aged, 80 and over , Antibodies, Viral/blood , Antibody Formation/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , COVID-19/blood , COVID-19/diagnosis , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Radiography, Thoracic
3.
Viruses ; 12(11)2020 11 08.
Article in English | MEDLINE | ID: covidwho-918921

ABSTRACT

Knowledge of the antibody-mediated immune response to SARS-CoV-2 is crucial to understand virus immunogenicity, establish seroprevalence, and determine whether subjects or recovered patients are at risk for infection/reinfection and would therefore benefit from vaccination. Here, we describe a novel and simple cell-ELISA specifically designed to measure viral spike S1-specific IgG produced in vitro by B cells in peripheral blood mononuclear cell (PBMC) cultures from a cohort of 45 asymptomatic (n = 24) and symptomatic (n = 21) individuals, with age ranging from 8 to 99 years. All subjects underwent ELISA serological screening twice, at the same time as the cell-ELISA (T2) as well as 35-60 days earlier (T1). Cryopreserved PBMCs of healthy donors obtained years before the COVID-19 pandemic were also included in the analysis. The preliminary results presented here show that out of 45 tested subjects, 16 individuals (35.5%) were positive to the cell-ELISA, 11 (24.5%) were concomitantly positive in the serological screening (T1 and/or T2), and only one person was exclusively positive in ELISA (T1) and negative in cell-ELISA, though values were close to the cutoff. Of note, five individuals (11.2%) tested negative in ELISA but positive in cell-ELISA and thus, they appear to have circulating B cells that produce antibodies against SARS-CoV-2, likely at levels that are undetectable in the serum, which challenges the negative results of the serological screening. The relative level of in vitro secreted IgG was measurable in positive subjects, ranging from 7 to 50 ng/well. Accordingly, all anti-SARS-CoV-2 antibody-positive subjects previously reported moderate to severe symptoms attributable to COVID-19, even though the RT-PCR data were rarely available to confirm viral infection. Overall, the described cell-ELISA might be an effective method for detecting subjects who encountered the virus in the past, and thus helpful to improve serological ELISA tests in the case of undetectable/equivocal circulating IgG levels, and a suitable and improved tool to better evaluate SARS-CoV-2-specific humoral immunity in the COVID-19 pandemic.


Subject(s)
Antibodies, Viral/blood , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Enzyme-Linked Immunosorbent Assay/methods , Pneumonia, Viral/diagnosis , Spike Glycoprotein, Coronavirus/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Betacoronavirus/immunology , COVID-19 , COVID-19 Testing , Child , Female , Humans , Immunoglobulin G/blood , Male , Middle Aged , Pandemics , SARS-CoV-2 , Serologic Tests , Young Adult
4.
Antiviral Res ; 181: 104882, 2020 09.
Article in English | MEDLINE | ID: covidwho-684270

ABSTRACT

SARS-CoV-2 is a novel pandemic coronavirus that caused a global health and economic crisis. The development of efficient drugs and vaccines against COVID-19 requires detailed knowledge about SARS-CoV-2 biology. Several techniques to detect SARS-CoV-2 infection have been established, mainly based on counting infected cells by staining plaques or foci, or by quantifying the viral genome by PCR. These methods are laborious, time-consuming and expensive and therefore not suitable for a high sample throughput or rapid diagnostics. We here report a novel enzyme-based immunodetection assay that directly quantifies the amount of de novo synthesized viral spike protein within fixed and permeabilized cells. This in-cell ELISA enables a rapid and quantitative detection of SARS-CoV-2 infection in microtiter format, regardless of the virus isolate or target cell culture. It follows the established method of performing ELISA assays and does not require expensive instrumentation. Utilization of the in-cell ELISA allows to e.g. determine TCID50 of virus stocks, antiviral efficiencies (IC50 values) of drugs or neutralizing activity of sera. Thus, the in-cell spike ELISA represents a promising alternative to study SARS-CoV-2 infection and inhibition and may facilitate future research.


Subject(s)
Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/virology , Enzyme-Linked Immunosorbent Assay/methods , Pneumonia, Viral/virology , Severe Acute Respiratory Syndrome/virology , Spike Glycoprotein, Coronavirus/immunology , Animals , Betacoronavirus/isolation & purification , COVID-19 , Chlorocebus aethiops , Coronavirus Infections/diagnosis , Humans , Pandemics , Pneumonia, Viral/diagnosis , SARS-CoV-2 , Severe Acute Respiratory Syndrome/diagnosis , Spike Glycoprotein, Coronavirus/genetics , Vero Cells , Viral Plaque Assay
SELECTION OF CITATIONS
SEARCH DETAIL